
Security Assessment

multiple
Aug 2nd, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
MAC-01 : Recommended Explicit Pool Validity Checks

MAC-02 : Uninitialized State Variables

MAC-03 : Lack of Input Validation

MBC-01 : Incorrect `shareToken` amount in Function `deposit()` and `withdraw()`

MBC-02 : Duplicate Code

MWC-01 : Privileged Ownership

MWC-02 : Lack of Input Validation

MWC-03 : `GPToken` in Contract `MulWork`

UVS-01 : Lack of Input Validation

UVS-02 : Strengthen Transfer Security

Appendix

Disclaimer

About

multiple Security Assessment

Summary
This report has been prepared for multiple smart contracts, to discover issues and vulnerabilities in the

source code of their Smart Contract as well as any contract dependencies that were not part of an officially

recognized library. A comprehensive examination has been performed, utilizing Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

Additionally, this audit is based on a premise that all external smart contracts are implemented safely.

The security assessment resulted in 10 findings that ranged from minor to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

multiple Security Assessment

Overview

Project Summary

Project Name multiple

Platform Ethereum

Language Solidity

Codebase https://github.com/multiple-finance/multiple-core

Commit ec3688f7097b672b0894ff7e4dbcacae70cfc85c

Audit Summary

Delivery Date Aug 02, 2021

Audit Methodology Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total Pending Partially Resolved Resolved Acknowledged Declined

Critical 0 0 0 0 0 0

Major 0 0 0 0 0 0

Medium 0 0 0 0 0 0

Minor 3 0 0 2 1 0

Informational 7 0 0 6 1 0

Discussion 0 0 0 0 0 0

multiple Security Assessment

https://github.com/multiple-finance/multiple-core

Audit Scope

ID file SHA256 Checksum

PCK
contracts/core/base/Permissi
on.sol

9385a36327bd1e9344682d595a4fa86c483953a842fb96f0b4d5bf9868a3cee8

ICC
contracts/core/interfaces/ICo
mpoundCERC20.sol

5d55f0fc211e1a22e021f54dfdd0461c36c906deda9a17d82306ac265d459ea2

ICE
contracts/core/interfaces/ICo
mpoundCETH.sol

7a58a2c343cd8dfb451941173628a53125ed970035b8f323321a39a0a3fc9a9e

IMB
contracts/core/interfaces/IMul
Bank.sol

7290d1b6c70495d56d49b297b9b195283f8c7310a75dbfc71f45df821766c82b

IMW
contracts/core/interfaces/IMul
Work.sol

139839a0d60ec0e6d33f60edc41e57e463b06eb8c65b524ff61af73c1cc77588

IPC
contracts/core/interfaces/IPay
Callback.sol

5b712e4779a36abc605646ed3440056c5f360781c97e9f5791f1fa256255e844

IUV
contracts/core/interfaces/IUni
swapV3Strategy.sol

049f60bfaad6d0915b385610d4ee7de79081f68fc8e751a4c9d1588e47c3b1b1

MAC contracts/core/MulAuction.sol 045399df4f2c07849df0858716623f7e96ce80fdf9669cf328b940b33e30e57c

MBC contracts/core/MulBank.sol fb50d9602e0fd2904c6bafe73e0930fbb7ba32ac7c32d2758926e5dbc9286ea9

MER contracts/core/MulERC20.sol 1eeda17bb3241e04841a85d7594707edd945679e8e0b542ce34f7dbd2ce2706d

MIC contracts/core/MulInvest.sol e1f0627b683ed51f0f0ee953a76a7572f4b18f560e06b148abcca35235348783

MWC contracts/core/MulWork.sol 97d8aa9364a0bbbd89280c7d1fc2fd04c62c4dc3fe18455f7bcc843494062b34

PCP contracts/core/Pop721.sol 4a62867aa9690f9b69125e3089a18c90d38ffb5fbef9639c1d2923b8edc8c7c7

UVS
contracts/core/UniswapV3Str
ategy.sol

5869df6bafa084affafc2819e13c9fbae6a656c5a35933e750f5f6cb62b09c15

THC
contracts/libraries/TransferHel
per.sol

0571a5bc25e32f41bf8fe36cdebfdd94c57794dd74274cf7006ea9313525c455

UCK
contracts/libraries/Upgradabl
e.sol

c11db30b13ef7503b8876eb607215bec7ce85476b209308b9bd5337797287a80

multiple Security Assessment

ID file SHA256 Checksum

WLC
contracts/libraries/WhiteList.s
ol

df8cb96ce83652ed0d6ef3b138b7a83f1e86b19a16d499184ceb7d325c9409d3

multiple Security Assessment

Privileged Functions

The project contains the following privileged functions that are restricted by the onlyOwner modifier.They

are used to modify the contract configurations and address attributes. We grouped these functions below:

MulAuction

function create(uint startTime, uint maxTime, uint plusTime, uint basePrice, uint addPrice, uint

tokenId)

function stop(uint pid)

MulBank

function initPool(ERC20 supplyToken)

MulWork

function setBaseQuota(address[] calldata tokens, uint[] memory amounts)

function upgrade(address newContract, uint[] memory tokenIds)

Pop721

function mint(address to, uint256 tokenId)

MulERC20

function mint(address _to, uint256 _amount)

function setDecimal(uint8 decimal)

function burn(address _to, uint256 _amount)

Permission

function addPermission(address _addPermission)

function delPermission(address _delPermission)

function getPermission(uint256 _index)

The dev team plans to hand over the owner to community governance or TimeLock in the future.

multiple Security Assessment

Findings

ID Title Category Severity Status

MAC-01 Recommended Explicit Pool Validity Checks Logical Issue Informational Resolved

MAC-02 Uninitialized State Variables Coding Style Informational Resolved

MAC-03 Lack of Input Validation Logical Issue Informational Resolved

MBC-01
Incorrect shareToken amount in Function
deposit() and withdraw()

Logical Issue Minor Resolved

MBC-02 Duplicate Code Coding Style Informational Resolved

MWC-01 Privileged Ownership
Centralization /
Privilege

Minor Acknowledged

MWC-02 Lack of Input Validation Logical Issue Informational Resolved

MWC-03 GPToken in Contract MulWork Logical Issue Informational Acknowledged

UVS-01 Lack of Input Validation Logical Issue Informational Resolved

UVS-02 Strengthen Transfer Security Logical Issue Minor Resolved

multiple Security Assessment

10
Total Issues

Critical 0 (0.00%)

Major 0 (0.00%)

Medium 0 (0.00%)

Minor 3 (30.00%)

Informational 7 (70.00%)

Discussion 0 (0.00%)

MAC-01 | Recommended Explicit Pool Validity Checks

Category Severity Location Status

Logical Issue Informational contracts/core/MulAuction.sol: 60, 78, 92 Resolved

Description

There's no sanity check to validate if a pool is existing.

Recommendation

We advise the client to adopt following modifier validatePoolByPid to functions bid() , claim() and

stop() .

11 modifiermodifier validatePoolByPidvalidatePoolByPid((uint256uint256 _pid _pid)) {{

22 requirerequire ((_pid _pid << poolInfo poolInfo..length length ,, "Pool does not exist""Pool does not exist")) ;;

33 __;;

44 }}

Alleviation

The development team resolved this issue in commit d7a8bc27b0d70240fd6f50286c6a04d0f90fb410 .

multiple Security Assessment

MAC-02 | Uninitialized State Variables

Category Severity Location Status

Coding Style Informational contracts/core/MulAuction.sol: 31~32 Resolved

Description

cntOfPool is uninitialized, but this variable is used in event Create() .

Recommendation

Consider making this variable increment in function create() .

Alleviation

The development team resolved this issue in commit d7a8bc27b0d70240fd6f50286c6a04d0f90fb410 .

multiple Security Assessment

MAC-03 | Lack of Input Validation

Category Severity Location Status

Logical Issue Informational contracts/core/MulAuction.sol: 35~36 Resolved

Description

Addresses should be checked before assigning to make sure they are not zero addresses.

Recommendation

Consider adding validation like bellow:

 constructorconstructor((IERC721 _GPTokenIERC721 _GPToken,, IERC20 _MulToken IERC20 _MulToken)) {{

 requirerequire((addressaddress((_GPToken_GPToken)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_MulToken_MulToken)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 GPToken GPToken == _GPToken _GPToken;;

 MulToken MulToken == _MulToken _MulToken;;

 }}

 constructorconstructor((IUniswapV3Factory _factoryIUniswapV3Factory _factory,, IMulWork _work IMulWork _work,, IMulBank _bank IMulBank _bank,, addressaddress
_rewardAddr_rewardAddr)) {{

 requirerequire((addressaddress((_factory_factory)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_work_work)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_bank_bank)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((_rewardAddr _rewardAddr !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 factory factory == _factory _factory;;

 work work == _work _work;;

 bank bank == _bank _bank;;

 rewardAddr rewardAddr == _rewardAddr _rewardAddr;;

 }}

		 constructorconstructor((IERC721 _gpTokenIERC721 _gpToken,, IMulBank _bank IMulBank _bank)) {{

 requirerequire((addressaddress((_gpToken_gpToken)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_bank_bank)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

	 	 GPToken 	 	 GPToken == _gpToken _gpToken;;

	 	 bank 	 	 bank == _bank _bank;;

		 }}

Alleviation

The development team resolved this issue in commit d7a8bc27b0d70240fd6f50286c6a04d0f90fb410 .

multiple Security Assessment

MBC-01 | Incorrect shareToken amount in Function deposit() and withdraw()

Category Severity Location Status

Logical Issue Minor contracts/core/MulBank.sol: 169, 186 Resolved

Description

The amount of shareToken in the function deposit() and withdraw() is incorrect. It should be share

instead of amount .

Recommendation

Consider changing to the correct logic like below:

 functionfunction depositdeposit((addressaddress token token,, uint256uint256 amount amount)) externalexternal {{

	 		 	 uintuint totalShare totalShare == getTotalSharegetTotalShare((addressaddress((poolpool..supplyTokensupplyToken))));;

 uintuint share share == totalShare totalShare ==== 00 ?? amount amount::
amountamount..mulmul((poolpool..shareTokenshareToken..totalSupplytotalSupply(())))..divdiv((totalSharetotalShare));;

 pool pool..shareTokenshareToken..mintmint((msgmsg..sendersender,, share share));;

 }}

 functionfunction withdrawwithdraw((addressaddress token token,, uint256uint256 share share)) externalexternal {{

 uintuint amount amount == share share..mulmul((totalSharetotalShare))..divdiv((poolpool..shareTokenshareToken..totalSupplytotalSupply(())));;

 requirerequire((poolpool..supplyTokensupplyToken..balanceOfbalanceOf((addressaddress((thisthis)))) >=>= amount amount,, "NO ENOUGH AMOUNT""NO ENOUGH AMOUNT"));;

 pool pool..shareTokenshareToken..burnburn((msgmsg..sendersender,, share share));;

 }}

Alleviation

The development team resolved this issue in commit d7a8bc27b0d70240fd6f50286c6a04d0f90fb410 .

multiple Security Assessment

MBC-02 | Duplicate Code

Category Severity Location Status

Coding Style Informational contracts/core/MulBank.sol: 11 Resolved

Description

MulERC20.sol is already imported in line 8, there is no need to import again.

Recommendation

Consider commenting the line 11 like below:

//import "./MulERC20.sol";//import "./MulERC20.sol";

Alleviation

The development team resolved this issue in commit d7a8bc27b0d70240fd6f50286c6a04d0f90fb410 .

multiple Security Assessment

MWC-01 | Privileged Ownership

Category Severity Location Status

Centralization / Privilege Minor contracts/core/MulWork.sol: 68 Acknowledged

Description

The owner of contract MulWork has the permission to transfer all tokenIds to another contract.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig governing

procedure and let the community monitor in respect of transparency considerations.

Alleviation

The development team responded that they will change this part of the logic in the next version.

multiple Security Assessment

MWC-02 | Lack of Input Validation

Category Severity Location Status

Logical Issue Informational contracts/core/MulWork.sol: 41~42 Resolved

Description

Addresses should be checked before assigning to make sure they are not zero addresses.

Recommendation

Consider adding validation like bellow:

 constructorconstructor((IERC721 _GPTokenIERC721 _GPToken,, IERC20 _MulToken IERC20 _MulToken)) {{

 requirerequire((addressaddress((_GPToken_GPToken)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_MulToken_MulToken)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 GPToken GPToken == _GPToken _GPToken;;

 MulToken MulToken == _MulToken _MulToken;;

 }}

 constructorconstructor((IUniswapV3Factory _factoryIUniswapV3Factory _factory,, IMulWork _work IMulWork _work,, IMulBank _bank IMulBank _bank,, addressaddress
_rewardAddr_rewardAddr)) {{

 requirerequire((addressaddress((_factory_factory)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_work_work)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_bank_bank)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((_rewardAddr _rewardAddr !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 factory factory == _factory _factory;;

 work work == _work _work;;

 bank bank == _bank _bank;;

 rewardAddr rewardAddr == _rewardAddr _rewardAddr;;

 }}

		 constructorconstructor((IERC721 _gpTokenIERC721 _gpToken,, IMulBank _bank IMulBank _bank)) {{

 requirerequire((addressaddress((_gpToken_gpToken)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_bank_bank)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

	 	 GPToken 	 	 GPToken == _gpToken _gpToken;;

	 	 bank 	 	 bank == _bank _bank;;

		 }}

Alleviation

The development team resolved this issue in commit d7a8bc27b0d70240fd6f50286c6a04d0f90fb410 .

multiple Security Assessment

MWC-03 | GPToken in Contract MulWork

Category Severity Location Status

Logical Issue Informational contracts/core/MulWork.sol Acknowledged

Description

In this contract, user paid GPToken to create a worker account using the function createAccount() . But

currently, user cannot redeem GPToken . Could you please tell us more detail about this?

Alleviation

The development team responded that GPToken is not redeemable, and redemption will not be provided in

the later period. This is equivalent to proof of work. If the performance is good, the GPToken will be

returned in other ways in the later period.

multiple Security Assessment

UVS-01 | Lack of Input Validation

Category Severity Location Status

Logical Issue Informational contracts/core/UniswapV3Strategy.sol: 65~68 Resolved

Description

Addresses should be checked before assigning to make sure they are not zero addresses.

Recommendation

Consider adding validation like bellow:

 constructorconstructor((IERC721 _GPTokenIERC721 _GPToken,, IERC20 _MulToken IERC20 _MulToken)) {{

 requirerequire((addressaddress((_GPToken_GPToken)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_MulToken_MulToken)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 GPToken GPToken == _GPToken _GPToken;;

 MulToken MulToken == _MulToken _MulToken;;

 }}

 constructorconstructor((IUniswapV3Factory _factoryIUniswapV3Factory _factory,, IMulWork _work IMulWork _work,, IMulBank _bank IMulBank _bank,, addressaddress
_rewardAddr_rewardAddr)) {{

 requirerequire((addressaddress((_factory_factory)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_work_work)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_bank_bank)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((_rewardAddr _rewardAddr !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 factory factory == _factory _factory;;

 work work == _work _work;;

 bank bank == _bank _bank;;

 rewardAddr rewardAddr == _rewardAddr _rewardAddr;;

 }}

		 constructorconstructor((IERC721 _gpTokenIERC721 _gpToken,, IMulBank _bank IMulBank _bank)) {{

 requirerequire((addressaddress((_gpToken_gpToken)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

 requirerequire((addressaddress((_bank_bank)) !=!= addressaddress((00)),, "INVALID_ADDRESS""INVALID_ADDRESS"));;

	 	 GPToken 	 	 GPToken == _gpToken _gpToken;;

	 	 bank 	 	 bank == _bank _bank;;

		 }}

Alleviation

The development team resolved this issue in commit d7a8bc27b0d70240fd6f50286c6a04d0f90fb410 .

multiple Security Assessment

UVS-02 | Strengthen Transfer Security

Category Severity Location Status

Logical Issue Minor contracts/core/UniswapV3Strategy.sol: 128, 318 Resolved

Description

There are a lot of transfer operations in functions _settle() and distributeFee() , add a reentrant would

be safer.

Recommendation

Consider adding a modifier as below:

 boolbool privateprivate _status _status;;

 modifiermodifier nonReentrantnonReentrant(()) {{

 requirerequire((!!_status_status,, 'reentrant call''reentrant call'));;

 _status _status == truetrue;;

 __;;

 _status _status == falsefalse;;

 }}

Alleviation

The development team resolved this issue in commit d7a8bc27b0d70240fd6f50286c6a04d0f90fb410 .

multiple Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

multiple Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

multiple Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

multiple Security Assessment

